

Product Specification Sheet

HLSCxx1XL-CD80

RoHS Compliant 10Gb/s SFP+ CWDM 80km Optical Transceiver 23Db budget

SHENZHEN HAILI LINK CO., LTD

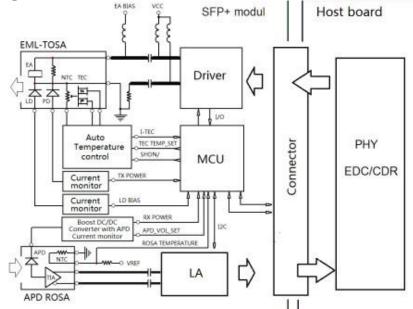
www.hilinktech.com

Product Features

- Supports 9.95 to 11.3Gb/s bit rates
- Duplex LC connectors
- •Hot pluggable SFP+ footprint
- •Source Cooled 1470nm~1610nm EML transmitter, APD Receiver
- Applicable for 80km SMF (Single Mode Fiber) connection
- •Low power consumption, < 1.5W
- Digital Diagnostic Monitor Interface
- •Optical interface compliant to IEEE 802.3ae 10GBASE-ZR
- •Electrical interface compliant to SFF-8431
- •Operating case temperature:

Commerical:0 to 70 °C Industrial: -40 to 80 °C

Applications


- 10GBASE-ZR at 10.3125Gbps
- •10G Ethernet
- •Other optical links

Product Descriptions

HILINK' HLSCXX1XL-CD80 CWDM 10Gbps SFP+ transceiver is designed to transmit and receive optical data over single mode optical fiber for link length 40km. This transceiver consists of two sections: The transmitter section incorporates a CWDM EML laser. And the receiver section consists of a APD photodiode integrated with a TIA. All modules satisfy class I laser safety requirements. Digital diagnostics functions are available via a 2-wire serial interface, as specified in SFF-8472, which allows real-time access to device operating parameters such as transceiver temperature, laser bias current, transmitted optical power, received optical power and transceiver supply voltage.

Functional Diagram

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit	Note
Supply Voltage	Vcc	-0.5	4.0	V	
Storage Temperature	Ts	-40	85	°C	
Relative Humidity	RH	0	85	%	

Note: Stress in excess of the maximum absolute ratings can cause permanent damage to the transceiver.

General Operating Characteristics

Parameter	Symbol	Min.	Тур	Max.	Unit	Note
Data Rate	DR	9.95	10.3125	11.3	Gb/s	
Supply Voltage	Vcc	3.13	3.3	3.47	V	
Supply Current	Icc ₅			450	mA	
Operating Case Temp.	Тс	0		70	°C	
	TI	-40		80	C	

Electrical Characteristics (TOP(C) = 0 to 70 °C, TOP(I) = -40 to 80 °C, VCC = 3.13 to 3.47 V)

Parameter	Symbol	Min.	Тур	Max.	Unit	Note		
	Transmitter							
Differential data input swing	Vin,pp	120		820	mv _{pp}	1		
Transmit Disable Voltage	VD	Vcc-0.8		Vcc	V			
Transmit Enable Voltage	VEN	Vee		Vee+0.8	v			
Input differential impedance	Rin		100		Ω			
	-	Receiv	ver					
Differential data output swing	Vout,pp	340	650	800	mVpp	2		
Output rise time and fall time	Tr, Tf	28			Ps	3		
LOS asserted	VLOS_F	Vcc-0.8		Vcc	V	4		
LOS de-asserted	VLOS_N	Vee		Vee+0.8	V	4		

1. Connected directly to TX data input pins. AC coupling from pins into laser driver IC.

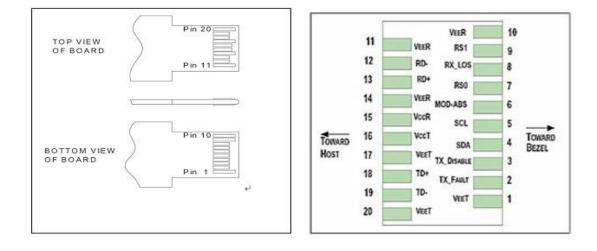
2. Into 100Ω differential termination.

3. 20 - 80%. Measured with Module Compliance Test Board and OMA test pattern. Use of four 1's and four 0's sequence in the PRBS 9 is an acceptable alternative.

4. LOS is an open collector output. Should be pulled up with $4.7k\Omega - 10k\Omega$ on the host board. Normal operation is logic 0; loss of signal is logic 1.

Optical Characteristics (ToP(C) = 0 to 70 °C, ToP(I) =-40 to 80 °C, VCC = 3.13 to 3.47 V)

Parameter	Symbol	Min.	Тур	Max.	Unit	Note	
Transmitter							
Operating Wavelength	λ	λ-7.5nm	λ	λ+7.5nm	nm	1	
Ave. output power (Enabled)	PAVE	0		4	dBm	2	
Side-Mode Suppression Ratio	SMSR	30			dB		
Extinction Ratio	ER	9			dB		
RMS spectral width	Δλ			1	nm		
Rise/Fall time (20%~80%)	Tr/Tf			50	ps		
Dispersion penalty	Tdp			3	dB		
Relative Intensity Noise	Rin			-128	dB/Hz		
Output Optical Eye	Compliant wit	h IEEE 0802.3ae	;				
		Receiv	er				
Operating Wavelength	λ	1260		1620	nm		
Receiver Sensitivity	Psen1			-24	dBm	3	
Sensitivity over 80Km fiber	PSEN2			-20	dBm	3	
Overload	Pave			-7	dBm		
LOS Assert	Pa	-35			dBm		


LOS De-assert	Pd		-26	dBm	
LOS Hysteresis	Pd-Pa	0.5		dB	

1. The wavelength λ =1470 nm~1610 nm, Total 8 wavelengths, 20 nm spacing

2. Measured at 10.3125b/s with PRBS 2³¹⁻¹ NRZ test pattern.

3.Under the ER worst =9, measured at 10.3125 Gb/s with PRBS 2^{31-1} NRZ test pattern for BER < 1×10^{-12}

Pin Defintion And Functions

Pin	Symbol	Name/Description
1	VEET [1]	Transmitter Ground
2	Tx_FAULT [2]	Transmitter Fault
3	Tx_DIS [3]	Transmitter Disable. Laser output disabled on high or open
4	SDA [2]	2-wire Serial Interface Data Line
5	SCL [2]	2-wire Serial Interface Clock Line
6	MOD_ABS [4]	Module Absent. Grounded within the module
7	RS0	Rate Select 0
8	RX_LOS [2]	Loss of Signal indication. Logic 0 indicates normal operation
9	RS1 [5]	Rate Select 1
10	VEER [1]	Receiver Ground
11	VEER [1]	Receiver Ground
12	RD-	Receiver Inverted DATA out. AC Coupled
13	RD+	Receiver DATA out. AC Coupled
14	VEER [1]	Receiver Ground
15	VCCR	Receiver Power Supply

16	VCCT	Transmitter Power Supply
17	VEET [1]	Transmitter Ground
18	TD+	Transmitter DATA in. AC Coupled
19	TD-	Transmitter Inverted DATA in. AC Coupled
20	VEET [1]	Transmitter Ground

1.Module circuit ground is isolated from module chassis ground within the module.

2.should be pulled up with 4.7k - 10k ohms on host board to a voltage between 3.15Vand 3.6V.

3.Tx Disable is an input contact with a 4.7 k Ω to 10 k Ω pullup to VccT inside the module.

4.Mod_ABS is connected to VeeT or VeeR in the SFP+ module. The host may pull this contact up to Vcc_Host with a resistor in the range $4.7 \text{ k}\Omega$ to 10 $k\Omega$.Mod ABS is asserted "High" when the SFP+ module is physically absent from a host slot.

Serial Interface for ID and DDM

The HLSCxx1XL-CD80 transceiver support the 2-wire serial communication protocol as defined in the SFP+ MSA. The standard SFP+ serial ID provides access to identification information that describes the transceiver's capabilities, standard interfaces, manufacturer, and other information. Additionally, This SFP+ transceivers provide an enhanced digital diagnostic monitoring interface, which allows real-time access to device operating parameters such as transceiver temperature, laser bias current, transmitted optical power, received optical power and transceiver supply voltage. It also defines a sophisticated system of alarm and warning flags, which alerts end-users when particular operating parameters are outside of a factory set normal range.

The SFP MSA defines a 256-byte memory map in EEPROM that is accessible over a 2-wire serial interface at the 8 bit address 1010000X(A0h), so the originally monitoring interface makes use of the 8 bit address(A2h), so the originally defined serial ID memory map remains unchanged. The structure of the memory map is shown in Table1.

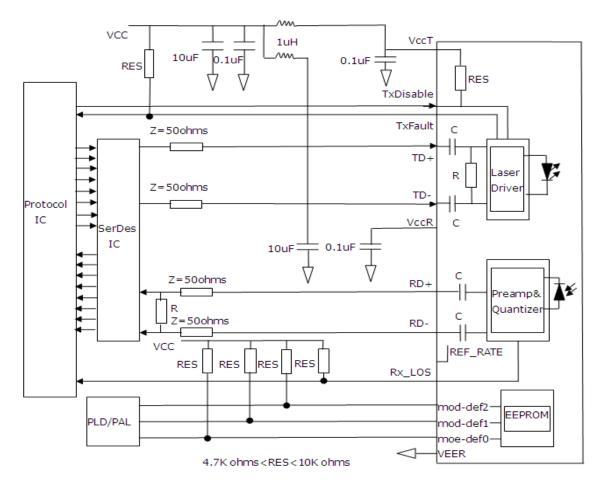
2	wire address 1010000X (A0h)	2 wire address 1010001X (A2h)			
Address	Address Information		Information Addre		Information
0.05		0~55	Alarm and Warning Thresholds (56 bytes)		
0~95	Serial ID Defined by SFP MSA (96 bytes)	56~95	Calibration Constants (40 bytes)		
00.407		96~119	Real Time Diagnostic Interface (24 bytes)		
96~127	Vendor Specific (32 bytes)	120~127	Vender Specific (8 bytes)		
100 055	Decented CEE0070 (120 bites)	128~247	User Writable EEPROM (120 bytes)		
128~255	Reserved,SFF8079 (128 bytes)	248~255	Vender Specific (8 bytes)		

Table 1. Digital Diagnostic Memory Map (Specific Data Field Descriptions)

Digital Diagnostic Specifications

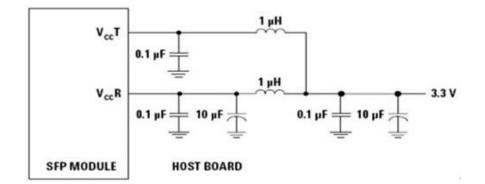
The HLSCxx1XL-CD80 transceivers can be used in host systems that require either internally or externally calibrated digital diagnostics.

Parameter	Symbol	Units	Min.	Max.	Accuracy	Note
Transceiver temperature	DTemp-E	°C	-45	+90	±5°C	1,2
Transceiver supply voltage	Dvoltage	V	2.8	4.0	±3%	
Transmitter bias current	DBias	mA	0	127	±10%	3
Transmitter output power	DTx-Power	dBm	-2	+6	±2dB	
Receiver average input power	DRx-Power	dBm	-26	-5	±2dB	

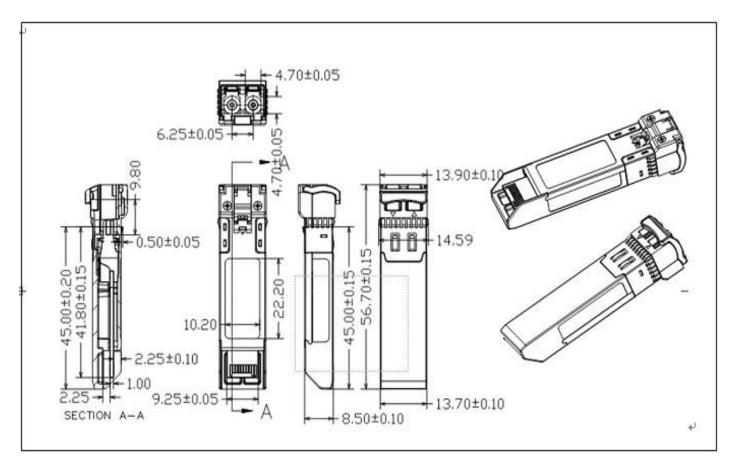


1.When Operating temp.=0~70 °C, the range will be min=-5, Max=+75

2. Internally measured


3. The accuracy of the Tx bias current is 10% of the actual current from the laser driver to the laser

Typical Interface Circuit


Recommended power supply filter

Note:

Inductors with DC resistance of less than 1 Ω should be used in order to maintain the required voltage at the SFP+ input pin with 3.3V supply voltage. When the recommended supply filtering network is used, hot plugging of the SFP transceiver module will result in an inrush current of no more than 30 mA greater than the steady state value

Package Dimensions

Ordering Information

Part Number	Description
HLSCxx1XL-CD80	SFP+,9.95 to 11.3Gb/s, CWDM, 80km, 0~70°C, with DDM
Xx means:	47=1270nm,49=1290nm59=1590nm, 61=1610nm (20nm Spacing)

For More Information

SHENZHEN HAILI HK Technology., LTD

www.hilinktech.com